
Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

The POP Buffer:
Rapid Progressive Clustering by Geometry Quantization

M. Limper1,2, Y. Jung2, J. Behr2, and M. Alexa3

1 TU Darmstadt, Germany 2 Fraunhofer IGD, Germany 3 TU Berlin, Germany

(a) 4 bit, 5.5% triangles (b) 5 bit, 16% triangles (c) 6 bit, 36% triangles (d) 16 bit, 100% triangles

Figure 1: Our fast progressive streaming method completely avoids CPU-based decoding steps, making it very attractive in
Web-based and mobile environments. The full range of LOD representations has been created within only 9 ms.

Abstract
Within this paper, we present a novel, straightforward progressive encoding scheme for general triangle soups,
which is particularly well-suited for mobile and Web-based environments due to its minimal requirements on the
client’s hardware and software. Our rapid encoding method uses a hierarchy of quantization to effectively reorder
the original primitive data into several nested levels of detail. The resulting stateless buffer can progressively be
transferred as-is to the GPU, where clustering is efficiently performed in parallel during rendering. We combine
our approach with a crack-free mesh partitioning scheme to obtain a straightforward method for fast streaming
and basic view-dependent LOD control.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computer Graphics—
Three-Dimensional Graphics and Realism—Display Algorithms

1. Introduction

3D Web applications have gained much attention within the
past few years. The advent of the first WebGL specifica-
tion enabled a direct integration of hardware-accelerated 3D
graphics into standard Web pages without the need for any
specific plug-ins, and it resulted in a wide variety of new
browser-based 3D graphics APIs [BEJZ09, DBPGS10]. De-
spite this trend towards high-performance 3D graphics on
the Web, the fast and progressive transmission of 3D meshes
within Web applications still remains a challenging prob-
lem. This might seem surprising, as there has been much

work dedicated to the development of Progressive Mesh
(PM) compression methods within the past decade, and be-
yond [PKJK05]. We think that there are several reasons for
the fact that such formats have not yet been widely used in
the context of 3D Web applications:

• Almost all of the existing PM methods optimize for Rate-
Distortion (R-D) performance. However, this aim does
not address the crucial tradeoff between compression ra-
tio and decode time, which has only been mentioned in
a few pioneering PM publications [Hop98, PR00] and the
very latest results from the Web3D community [LCD13].

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

• Many existing PM methods make assumptions about the
topology of the input mesh, for example that it is a mani-
fold [AD01]. In contrast, a general format must be able to
handle any kind of input mesh.

• Fast encoding is generally not considered a prior aim at
all. Nevertheless, this aspect can become important in
some 3D Web scenarios, for example in the context of 3D
model community platforms, where servers quickly pre-
pare new assets for transmission and online presentation.

As a consequence of all these points, common Web3D data
formats have rather small compression ratios compared to
PM methods, but keep encode time and especially decode
times as small as possible [LCL10, BJFS12, Chu12]. This
ensures an interactive user experience, and it is usually a
good choice as long as the available bandwidth is not ab-
solutely minimal (i.e., only a few MBits per second), which
would justify advanced compression methods. Because of
all these reasons, we argue that a progressive mesh transmis-
sion format for the Web must take into account different re-
quirements than past PM algorithms. Those claims are also
supported by latest research results from the Web3D com-
munity [LCD13, LWS∗13].

Within this paper, we present a novel mesh encoding method
which can be performed at interactive rates and is able to
handle arbitrary triangle soups. It enables fast progressive
transmission and basic Level-Of-Detail (LOD) features. We
first introduce our algorithm and provide a brief discussion
on the geometric properties of the intermediate representa-
tions. We then present a mesh partitioning scheme which
avoids cracks between partitions with differing resolutions,
and we discuss several important aspects like encoding time,
rendering performance and memory consumption.

The key aspect of our method is a novel, stateless stor-
age structure, which can be progressively transmitted to the
client’s GPU. This structure, called the Progressively Or-
dered Primitive (POP) buffer, provides an interlaced trans-
mission of the input model’s triangle data, comparable to the
progressive Adam7 algorithm used by PNG images on the
Web. While our method does not include sophisticated com-
pression capabilities, it is very well-aligned to GPU struc-
tures and introduces zero CPU-based decode steps on the
client side. This is especially crucial if devices require their
precious CPU power for other tasks, or if they are simply
technically limited in this domain. The approach is there-
fore particularly well-suited for Web-based environments
and mobile clients.

2. Related Work

Quantization and Adaptive Precision. To compress mesh
geometry for both, transmission and storage, many ap-
proaches employ quantization of vertex positions, as pro-
posed in the pioneering work of Deering [Dee95]. While

more sophisticated methods like quantization of spectral co-
efficients are clearly of superior quality [BCG05], uniform
quantization in cartesian space is still the most popular ap-
proach in practice [JPP08] – likely because it is fast and sim-
ple. In the following, we will use the term quantization as a
synonym for this quantization method.

Chow [Cho97] observed that integer quantization is simi-
lar to snapping vertex positions to a regular grid. He com-
putes the error based on the granularity of a region. However,
quantization is simply considered a static pre-processing
step. Hao and Varshney [HV01] have shown how the dy-
namic use of quantized coordinates can speed up 3D trans-
formations. Pool et al. [PLS08] experimentally confirmed
these findings and provided a study on depth errors. Still,
both approaches are ignoring the fact that many triangles
might become degenerate after quantization. They therefore
just complement LOD techniques by dynamically reducing
the precision of vertex properties, while the POP buffer pro-
posed in this paper inherently combines both approaches.

Purnomo et al. [PBCK05] use quantized vertex attributes for
a compact, densely packed storage of mesh data in GPU
memory. Decompression is performed inside a vertex shader
during rendering. Still, they focus on the off-line creation of
a static, simplified and quantized mesh representation, leav-
ing dynamic aspects like LOD management and progressive
representation aside.

In addition to storing quantized vertex data in GPU memory,
Meyer et al. [MSGS11] also adapt the precision dynamically
during runtime in order to reduce memory load. However, it
requires costly dynamic updates of single bits for each vertex
during runtime. In contrast, the proposed POP method uses
a stateless buffer, which is simultaneously used by all LOD
representations, and by all instances of a model.

Progressive Mesh Compression. Methods associated with
the term Progressive Meshes (PMs), as originally proposed
by Hoppe [Hop96], encode mesh data in a compact and pro-
gressive structure based on sequential edge collapse and ver-
tex split operators. As the CPU-based processing time of
such approaches can become critical during runtime, game
developers have early tried to port parts of the technique
to the GPU [Sva99]. The focus of latter work is primar-
ily shifted towards the optimization of R-D performance
(see e.g. the survey of Peng et al. [PKJK05]), aiming at
compact representations for transmission and mostly leaving
the aspects of decode time and LOD rendering completely
aside [PK05, ALAK11, LLD12]. Hu et al. [HSH09] pre-
sented a GPU-based rendering algorithms for PMs, which
partially parallelizes the original method of Hoppe by us-
ing geometry shaders. Unfortunately, such advanced GPU
programming features are not available in most mobile and
Web-based graphics APIs, such as OpenGL ES and WebGL.
In addition, a problem inherent to the basic design of all PM
algorithms is the need to store and manage the connectivity

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

information for each instance of a mesh separately. In con-
trast, our stateless POP buffer does not need to be modified
at all, once it has been uploaded to GPU memory.

Discrete LOD and Vertex Clustering. As an alternative to
PMs, discrete LOD methods completely avoid changes of
the mesh data on the GPU. Several pre-computed versions
of a mesh are used to represent different levels of detail.
This also enables the use of multiple instances without addi-
tional memory consumption [LWC∗02, Wil11]. The method
of Sander el al. [SM05] allows for smooth transitions be-
tween LOD representations without popping artifacts. Still,
it does not provide a truly progressive data structure, since
the representations are still completely disjoint in memory.
In contrast, the proposed POP buffer represents several LOD
representations in a nested manner, which enables progres-
sive transmission and avoids additional memory overhead.

While a wide variety of mesh simplification methods has
been proposed in the past, including e.g. methods based on
error-controlled edge contraction [GH97], this classes of al-
gorithms are not really related to our clustering method.
Therefore, we refer the interested reader to the still very
good and detailed overview in the book of Luebke et
al. [LWC∗02]. The original Vertex Clustering approach, pro-
posed by Rossignac and Borrel [RB92], groups vertices into
uniform grid cells by checking their truncated coordinates.
Vertices within the same cell are then collapsed to a sin-
gle representative vertex, which could consider importance
weights. After this first step, polygons that are degenerate
get filtered out, resulting in a static, simplified mesh rep-
resentation. Extensions to the original algorithm have been
proposed by several authors, improving the quality of the
results [LT97], enabling dynamic, view-dependent cluster-
ing [LE97] or out-of-core processing, without [Lin00] and
with help of modern GPU features [DT07].

Schmalstieg and Schaufler [SS97] achieve progressive re-
finements by simply updating vertex indices within the
indexed triangle list whenever the LOD changes. How-
ever, this introduces additional processing load. Further-
more, sharing the same triangle buffer for rendering multi-
ple instances with different LOD becomes impractical. Will-
mott [Wil11] improves the result of the clustering process
through several criteria improve the preservation of shape,
thin features and attribute discontinuities, while still per-
forming simplifications at interactive rates. However, his
method does not enable progressive transmission, since it
still creates several, disjoint LOD representations.

3. The POP Buffer

The method proposed within this paper builds on the most
widely used geometry representation in modern render-
ing pipelines, which consists of index buffers and vertex
buffers [SNB07]. Within this section, we describe how nest-
ing and reordering of triangle data is realized within the

Figure 2: Switching the grid resolution. Triangles marked
in red become degenerate at the lower level and can thus be
sorted out. Note that the grids are nested, so that degener-
ate triangles never reappear at lower levels or, conversely,
triangles never degenerate at higher levels.

stateless Vertex Buffer Objects (VBOs), and how the pro-
posed reordering scheme realizes a straightforward structure
for progressive streaming and basic LOD control.

3.1. Clustering

We assume each 3D model is given as a triangle mesh,
with n vertex positions {vi}, with index i < n, and tri-
angles T ⊆ {(i, j,k) | i, j,k < n}. We start to obtain dif-
ferent LOD representations by computing an axis-aligned
bounding box, represented by the minimal and maximal
corner bmin,bmax ∈ R3, for the input mesh. Given a max-
imal number of bits q for the quantization, we transform
this box to a uniform grid in R3 with integer grid points in
{0,1, . . . ,2q− 1} for each coordinate, i.e. the integer lattice
(Z2q)3.

To map the original shape to the grid of integer coordinates,
we apply the following transformation to each vertex coor-
dinate

wic =

⌊
2q−1

bmaxc −bminc

(vic −bminc)+
1
2

⌋
, (1)

where c denotes the index of coordinate direction. We note
that all wic are integers in the range {0,1, . . . ,2q − 1}, as
desired.

Let the quantization level be denoted l ≤ q. Our main idea
for vertex clustering is to only use the l most significant bits
of wic , which corresponds to using a reduced uniform grid
with integers in the range {0,1, . . . ,2l − 1}. We employ a
truncation function τl(n) = bn/2q−lc ·2q−l , extracting the l
most significant bits from a positive integer value n, which
can also be implemented using simple bit operations. Based
on the truncated integers, the inverse of the bounding box
transformation becomes

vic =
bmaxc −bminc

2l wic +bminc . (2)

Using the truncation function, we are able to easily modify

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

the uniform grid resolution in both directions: truncating one
bit less than before is equal to doubling the grid resolution,
and vice versa. We can therefore refer to these two opera-
tions as cell merge and cell split, as illustrated in Fig. 2.

3.2. Nesting

We make the following observations: if two points in space
p,q are mapped to identical points at level l′ they necessarily
share the same l′ most significant bits. Consequently, they
also have the same k < l′ most significant bits and are also
mapped to the same point for all levels k≤ l′. Conversely, if
they are mapped to different points for a level l′′, they differ
in their l′′ most significant bits – and are mapped to different
points for all levels k ≥ l′′.

This observation can be extended to edges and triangles. If
the two endpoints of an edge in the triangulation are mapped
to the same grid point, the edge is degenerate. If this happens
at level l′, then this is true for all levels k ≤ l′; conversely,
if the edge has non-zero length at level l′′, this is true for all
levels k ≥ l′′.

A triangle becomes degenerate once one of its edges is
degenerate. For each triangle with index t, we denote the
smallest level at which it becomes non-degenerate lt . Since
each triangle is degenerate for all levels k < lt , and non-
degenerate for all levels k≥ lt , the levels lt form equivalence
classes over the set of triangles. Elements in a class form a
set Ql = {t | l = lt}. The nesting property makes identify-
ing the non-degenerate triangles required at a certain level l
particularly easy: ∪k≤lQk.

3.3. Reordering

We call the level lt for triangle t the popup level as, intu-
itively, the triangle appears at this level as the model is re-
fined. Now we sort the triangles according to their popup
levels. This results in one reordered sequence of the original
triangles, which we call the Progressively Ordered Primitive
(POP) buffer.

Discrete sorting can be efficiently performed in O(n) opera-
tions (where n is the number of triangles), exploiting that the
maximum number of equivalence classes is q. The whole
sorting procedure simply reduces to creating containers for
each level k ≤ q and then concatenating the containers.

Fig. 3 illustrates the POP buffer and compares it to the ap-
proach of Sander and Mitchell [SM05], where several static
LOD representations are stored disjointly in memory. Since
each detail level of the POP buffer reuses all data of lower
detail levels, progressive loading becomes trivial: everything
we need to do to refine our model is to push additional trian-
gle data at the back of our buffer on the GPU. Furthermore,
switching the LOD can be realized by adjusting a single pa-
rameter of the corresponding draw call, which just specifies

(a) Sander and Mitchell [SM05]

(b) POP Buffer

Figure 3: The POP buffer in GPU memory, compared to the
approach of Sander and Mitchell. Their method stores sev-
eral LOD representations in disjoint subsections of a mesh
data buffer M. In contrast, our approach reorders mesh data
in such a way that the mi elements of each buffer are fully
contained within the mi+1 elements of the succeeding buffer.

the amount of rendered primitives from the beginning of the
buffer.

It is worth noting that the vertex and triangle data in each set
Ql can be freely sorted, according to the need of the applica-
tion. Yet, sorting across the boundaries of sets is impossible.
This limitation can result in reduced locality of the triangles
in memory. We discuss the effects on framerate in Sec. 7.3.
The practical aspects of progressive transmission and basic
LOD management are discussed within the following sec-
tions 4 and 5.

4. Progressive Transmission

The greatest advantage of the proposed POP buffer is that
it can be used for streaming applications in a very straight-
forward way: incoming vertices and triangles can simply be
pushed to the back of the corresponding buffers.

At this point, the question arises how refinement of the quan-
tization scheme is realized. One possibility would be to al-
ways explicitly update the quantized positions of all vertices
in GPU memory, as soon as data from a new precision level
is available. In that case, we would always only send the new
bits for existing vertex positions, and all the currently used
bits for new vertex positions. Nevertheless, this requires ad-
ditional processing of incoming data, and additional GPU
memory transfer. Such steps can be quite time-consuming,
especially for larger models [MSGS11]. The situation is
even worse if client devices with limited CPU power are

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

Figure 4: An intermediate stage of interlaced triangle data
transmission. Left: Raw triangle data for detail level l = 5,
without vertex clustering. Right: Same data, with clustering
applied during rendering.

used, and we also don’t want our Web application to block
user interaction during the decoding process (or to rely on
multi-threading).

To overcome this limitations, we chose to always transmit
the full-precision vertex positions, and to perform the quan-
tization on-the-fly in a vertex shader during rendering. Ob-
viously, this leaves some bits unused during early stages
of transmission, but we found that the drawbacks of this
method are clearly outweighed by its advantages, which are
as follows:

• CPU-based decoding steps are completely avoided.

• GPU memory traffic is kept minimal.

• The POP buffer structures in GPU memory are stateless.

The last point has several interesting implications, especially
for fast LOD selection and instanced rendering (see Sec-
tion 5).

As can be seen in Fig. 4, the amount of vertices which are
shared among the triangles is relatively small in the be-
ginning, since the interlaced transmission scheme tends to
spread non-degenerate triangles within each level over the
mesh. Nevertheless, the fact that we do not explicitly merge
collapsed vertices of the intermediate stages of the model
has the great advantage that we do not need to manipulate
the geometry or connectivity data at all, once it has been
downloaded.

5. Dynamic LOD Control

Within this section, we describe how we select a matching
LOD during runtime by using a bound on the geometric er-
ror, depending on the distance of each part to the view plane.
Given the error bound, we explain how we avoid cracks
along the partition’s boundaries when rendering different
sub-meshes of a large triangle mesh with individual LOD.

Figure 5: Image-space error for level l according the bound
provided by Eq. 5 (left) and a coarser level l−3 (right).

5.1. Error Estimation

We know that, at level l, we have dismissed q− l bits of
the representation of each vertex or, in other words, we have
lumped all vertices in a box with diameter ‖bmax−bmin‖

2l into
one position. Because we choose the center of this box as the
vertex position, the error at level l is bounded from above by

εl =
‖bmax−bmin‖

2l+1 . (3)

Given this bound on the size of the error in world coordi-
nates, we transform it to screen space, following the deriva-
tion of Hao and Varshney [HV01]. We assume quadratic pix-
els, an aspect ratio of one, a viewport of dimensions w× h,
and field of view θ. We find the approximate size of one pixel
projected into world coordinates at distance d to be

η =
2d tan(θ/2)

h
. (4)

If we wish to hide geometric errors, we need to make sure
that they are smaller than one pixel, i.e.

l >
⌈

log2
‖bmax−bmin‖

η

⌉
−1. (5)

By this choice of level, there is no need for blending vertices
at the transition between levels, while still avoiding popping
artifacts.

Nevertheless, smaller shading errors may be visible, even
with a guaranteed sub-pixel geometric error. The reason for
this lies in the shifted vertex positions: although we are using
the full-precision (e.g., 16 bit) normal information at each
point, the normals are not adapted to fit with the surface nor-
mal at the new position of each vertex after quantization.

Fig. 5 shows a comparison of image-space errors for two dif-
ferent quantization levels, revealing that shading errors occur
especially at sharp edges. Still, the choice to keep the full-
precision normal for each vertex provides a good preserva-
tion of discontinuities, especially compared to vertex cluster-
ing approaches that are explicitly unifying vertices (see the

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

Figure 7: Closing cracks between sub-meshes. We achieve
crack-free borders by sorting a small number of protected
vertices to the beginning of the vertex buffer.

discussion of attribute discontinuities in the work of Will-
mott [Wil11]).

However, as can be seen in Fig. 6, methods based on error-
controlled edge collapses, like the one proposed by Garland
and Heckbert [GH97], can provide much better results with
the same triangle budget. On densely tessellated flat sur-
faces, for instance, such algorithms are able to remove many
triangles without a visible change, while keeping important
details in other regions of the mesh. In contrast, using a fixed
quantization grid instead leads to blocky appearance, and
small features get lost at lower precision levels. Neverthe-
less, progressive methods based on edge collapses in turn
lack almost all of the advantages of the proposed POP buffer
structure (for instance, handling triangle soups, zero decode
time and instanced rendering).

As for the normals, we are always using the full-precision
texture coordinates. Errors arise in the form of stretched tex-
ture regions. However, by keeping the original texture co-
ordinates at the quantized positions, we can already guar-
antee that texture coordinates are never mistakenly moved
after simplification, which is especially important when us-
ing a texture atlas. We found that this simple and practical
approach provided results of surprisingly good quality. An
example is shown in Fig. 1.

5.2. Mesh Partitioning and Crack Prevention

The appropriate LOD depends on the minimal distance d
of an object. A large model, however, might span quite a
large distance interval. This results in many vertices being
quantized to a precision that is significantly higher than nec-
essary. To prevent this, it is common to partition a mesh
into several sub-meshes, and then computing an appropriate
LOD for each sub-mesh independently. In our setting, we
simply compute individual bounding boxes and then use the
equations presented previously to bound the error for each
sub-mesh.

A general problem that comes with mesh subdivision for
LOD management are cracks in an originally closed sur-
face [SM05, MSGS11], occuring when boundary vertices of
sub-meshes are mapped to different positions in world co-
ordinates. A common solution is to use the same quanti-

Figure 8: Instanced rendering, with color-coded LOD. All
36 instances share a single, stateless POP buffer.

zation grid for each sub-mesh, along with roughly equally
sized bounding boxes [SM05,LCL10]. However, we still en-
counter cracks in the mesh if the precision levels of adja-
cent sub-meshes differ, which can especially be visible when
coarser levels are used during streaming.

To overcome this problem, we have decided to simply pro-
tect the positions of all vertices that are located at the borders
the sub-meshes by always using the highest possible quan-
tization level l = q. All protected vertices are flagged dur-
ing preprocessing, and the computation of degenerate trian-
gles consequently considers the high-precision coordinates
for these vertices.

To identify protected vertices during rendering, we sort them
to the beginning of the vertex buffer and provide their to-
tal number as an additional uniform variable in the vertex
shader. Each rendered vertex can then simply check this
number against its ID (e.g., the value of gl_VertexID,
if available) to decide whether it should be displayed with
the full precision of q bits. Fig. 7 illustrates the difference
for a real-world example.

We note that the idea of protected vertices could also be used
for other applications, for example preserving feature edges
in a mesh. Nevertheless, this also decreases the amount of
degenerate triangles at each level, and therefore limits the
overall efficiency of the streaming process, which is why we
decided to restrict this method to border vertices.

6. Instanced Rendering

A big advantage of the POP buffer is that it supports
instanced rendering and streaming (unlike other progres-
sive streaming and LOD techniques [SS97, Sva99, HSH09,
MSGS11]). With the proposed method, each instance of a
model only needs to manage a single integer value, repre-
senting its current level of detail. During rendering, we can
then look up the number of primitives for this level and draw
the corresponding number of elements from the POP buffer,
using matching vertex shader settings for quantization (see
Fig. 8 for an example).

It is worth noting that rendering a single geometry from dif-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

(a) Full, #t=1204 (b) [RB92], #t=547 (c) [Wil11], #t=570 (d) POP, #t=512 (e) [GH97], #t=546

Figure 6: Simplification to approximately 40% of triangles. (b)–(d) Vertex clustering methods. (e) Quadric-based simplification.

Model #Tris Quant. Reord. Total

Building 1,896 0.1 0.2 0.3
Fandisk 12,946 0.3 1.7 2.0
Tractor 49,480 2.0 6.9 8.9
Bunny 69,451 1.9 9.3 11.2
Horse 96,966 2.9 14.5 17.4
Wheel 257,376 9.5 31.9 41.4
Dragon 867,522 23.5 135.9 159.4
Buddha 1,087,716 27.9 176.3 204.2

Table 1: Encoding time, given in ms, for various models (in-
put data quantization, reordering).

ferent view points during another rendering pass (for exam-
ple, for obtaining a shadow map or a picking buffer) can be
done in exactly the same way. Many applications, such as
collision handling or picking, might therefore greatly bene-
fit from this approach, too.

7. Results

7.1. Encoding

In many scenarios, the encoding of meshes into a specific
format has to be performed at interactive rates [Wil11]. An
example could be a Web-based platform where all users can
upload 3D assets, which are then instantly processed on a
server for instant online presentation. The proposed POP
buffer structure fits this purpose very well, since even large
meshes can be processed within a fraction of a second, as
can be seen in Table 1. Larger models have been previously
subdivided. Our test machine was a MacBook Pro notebook
with an i7 CPU, 2.4 GHz and 4 GB RAM, and we were
able to reorganize triangle data into the proposed POP buffer
structure at rates of up to 4 million triangles per second, us-
ing a sequential, CPU-based implementation.

As the fast labeling approach used by our method (see Sec-
tion 3.3) is inherently parallel, we think that an optimized
(e.g., GPU-based) implementation would achieve even faster
run times.

Another interesting topic is how our algorithm relates to
Streaming Meshes, as proposed by Isenburg and Lind-

strom [IL05]. The method maximizes data coherency by re-
ordering the mesh data, which allows mesh processing algo-
rithms to be executed on out-of-core data volumes, in a slid-
ing window fashion. The approach of reordering mesh data
is quite similar to our method, but both algorithms rely on
different criteria for reordering. While the final POP struc-
ture itself is therefore not compatible with their mesh format,
we note that our encoding algorithm could also operate on a
Streaming Mesh, in order to perform an efficient out-of-core
construction of our proposed POP buffer structure.

7.2. Streaming

As a consequence of the interlaced triangle data transmis-
sion, the amount of new vertices is relatively high in the early
levels, as also illustrated in Fig. 9. Fortunately, this drawback
is compensated by the relatively small amount of triangles
within those levels, and it is only valid for indexed render-
ing. Fig. 1 as well as the accompanying video demonstrate
that a first impression of the shape is already available for a
small fraction of the total data.

As can be seen in the rightmost chart of Fig. 9, the geo-
metrical error vanishes quickly, since we are doubling the
precision for each incoming batch of triangle data. Note that
this chart does not represent an R-D curve, since it is inde-
pendent from any encoding or compression scheme, which
could be used at the cost of additional decode steps.

With the proposed approach, the time needed to decode
data is always zero, therefore the time needed to download
the levels is crucial. As the maximum precision level, we
found q = 16 bits to provide a sufficient quality, therefore
the bunny model, for example, has an uncompressed size of
34,834× (3× 2) = 209,004 bytes for the vertex positions.
It furthermore needs 69,451× (3× 2) = 416,706 bytes for
the connectivity, if 16 bit indices are used (like it is for exam-
ple mandatory when using WebGL). In sum, the bunny mesh
can hence be represented by 625,710 bytes, and by some ad-
ditional metadata (like the number of triangles within each
level), which can be sent separately and has neglectable size.

Assuming that, for example, a common DSL connection
with a bandwidth of 16,000 kbit/s is used, this means that
the bunny mesh can be completely downloaded within 0.31
seconds. For any compression method, this means that it

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

Figure 9: The two leftmost charts depict the total amount of used triangles and used vertices at each precision level for different
models. The rightmost chart illustrates the Hausdorff error for several levels of the quantized bunny model.

has to be able to decompress at least 221,991 triangles/s
in order to deliver the full mesh at the same time as our
uncompressed approach. Most popular PM approaches, if
they have investigated decompression speed, have reported
significantly slower decompression times (e.g., Alliez and
Desbrun [AD01] reported 5,000 triangles/s). The latest PM
compression results we could find, provided by Maglo et
al. [MCAH12], also only reported a decompression rate of
122,000 triangles/s, using an i7 CPU and 2.8 GHz.

As can be seen, even in the raw, uncompressed format, our
method is able to deliver the triangle data in a progressive
manner within an acceptable amount of time. This is espe-
cially true if mobile client devices are used, where the de-
compression performance is usually expected to be much
worse than for desktop machines [LCL10, LWS∗13].

7.3. Rendering

We have implemented the POP buffer in a lightweight,
browser-based render client, solely relying on standard 3D
Web technology, such as JavaScript and WebGL. This made
it possible to easily test the efficieny of the POP buffer as a
basic LOD method on different hardware platforms, includ-
ing various WebGL-capable mobile devices (see Fig. 10).

Resulting frame rates for different triangle counts are given
in Table 2. On all devices, we can ensure smooth user in-
teractions by instantly switching to a lower precision level
during camera movements (see the accompanying video for
a brief demonstration). As can be seen, the proposed method
resulted in a significant speedup in rendering time, compared
to regular vertex buffers without any LOD, on all tested plat-
forms. It can furthermore be seen that the speedup proved
by our experiments is not due to limited fragment shading
costs at far distances, as similar results have been obtained
for varying precision with a fixed camera position.

One could also suppose that the GPU’s ability to filter out
degenerate triangles before the fragment processing stage
would make our LOD scheme less efficient, or even obso-
lete. However, we did not measure any significant speedup
when using only quantization and always rendering the full
buffer. The reason for this is that our application is vertex
bound (a basic assumption for most LOD methods), and that

Coverage l #Tris PC iPhone 5 iPad 2 Nexus 7

26.9% 9 913K 158 14 7 1.5
27.1% 7 367K 246 30 16 2.5
27.2% 6–7 294K 257 33 19 3
27.4% 6 141K 313 40 33 5

Coverage l #Tris PC iPhone 5 iPad 2 Nexus 7

26.9% 9 913K 158 14 7 1.5
4.0% 7–8 367K 248 30 16 2.5
0.5% 6 141K 315 40 33 5
0.3% 5 56K 321 40 34 8

Table 2: Rendering times for the Happy Buddha model
on several devices, measured in frames per second on a
512× 512 viewport. The first column indicates the view-
port coverage of the model. Top: varying precision at a
static camera distance. Bottom: adaptive precision at vary-
ing camera distances.

Figure 10: Due to its lightweight, straightforward design,
our progressive streaming and LOD approach works per-
fectly with mobile devices (here: iPad2 and iPhone5).

degenerate triangles can only be identified after the vertex
processing stage.

As already noted, our reordering method can be seen as an
interlacing scheme, spreading the triangles of each refine-
ment level over the whole mesh (see Fig. 4). This can poten-
tially have a negative impact on the average cache miss ratio
(ACMR) during rendering, and therefore also on the overall
render performance. Optimizing for example the full Horse
model with the Tipsify method [SNB07], we get an ACMR
of 0.66. In contrast, all we can do in the context of the POP

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

Figure 11: Left: Cache miss rate for different levels of the
Stanford Bunny. Right: Render performance, compared with
cache-optimized data, using 401 instances of the model.

buffer is optimizing the different buffer segments, resulting
in a higher ACMR from 2.15 to 1.31 for the several levels.
Fig. 11 shows the ACMR for all levels of the Bunny model,
reference values have been obtained by optimizing the entire
snapshot of the model at each level separately.

In the theoretical case, render performance can be linearly
dependent on the ACMR [SNB07]. Modern GPUs, however,
process batches of vertex data in parallel and are less sensi-
tive to data locality [Kil08]. We see this effect in our fram-
erate measurements: the total reduction of the vertex count
during rendering was found to be far more important than
the influence of caching mechanisms. The performance loss
due to increased cache miss rate is illustrated in Fig. 11. The
locked version of our POP buffer was using fixed precision
levels (instead of true view-dependent LOD) to focus solely
on cache miss performance during the comparison. As can
bee seen, our findings indicate a loss of performance due re-
duced data locality of less than 20% on a modern GTX 670
GPU, and which is far better than the implied linear correla-
tion with the ACMR.

8. Conclusion and Future Work

We have shown that a uniform quantization in cartesian
space, based on the truncation of integer coordinates, can
also be regarded as the application of a simple vertex clus-
tering scheme on a uniform grid. As a consequence, we find
that degenerate triangles can be progressively sorted out at
lower levels of detail, leading to a compact and progressive
mesh representation – the POP buffer. This buffer consumes
the same amount of GPU memory as the original mesh data,
yet allows for progressive rendering with minimal computa-
tional overhead.

In summary, the proposed method has the following benefits:

• As the concept of quantization is independent from any
assumptions about topology or manifoldness, the pro-
posed method is able to handle arbitrary triangle soups.

• The mesh representation is obtained by simply reorder-
ing the input mesh data according to some straightforward
criteria. As a consequence, even large meshes can be au-
tomatically converted at interactive rates.

• The resulting LOD representations are nested. As a con-
sequence, mesh data can be transmitted over networks in
a progressive manner.

• Streaming applications like Web apps can directly send
downloaded sections of the POP buffer to GPU memory,
without any CPU-based decoding steps. This is especially
interesting for setups where the client’s CPU power is a
critical resource.

• The POP buffer is stateless, meaning that it is not manip-
ulated at all when switching the LOD. To the best of our
knowledge, it is the first progressive 3D mesh represen-
tation with this unique property, which helps to minimize
GPU memory traffic and is also very useful in the context
of instanced rendering.

• The POP buffer has exactly the same memory footprint as
a regular single-rate buffer.

• The method presented in this paper can be easily im-
plemented, even with WebGL or GPUs that have a very
limited feature set, making the integration into existing
pipelines very simple and attractive.

Still, the proposed method has some specific drawbacks
compared to more specialized approaches:

• PM methods provide advanced data compression capabil-
ities. They deliver superior results if the client has power-
ful hard- and software for decoding, and if the available
bandwidth is rather low. However, PMs can not be effi-
ciently used with multiple instances of a mesh, and ad-
justing (at least) the connectivity data during LOD man-
agement also introduces additional processing overhead .

• Discrete LOD methods provide better visual results and
a more sophisticated handling of attributes without us-
ing more triangles. Still, they generally consume more
memory than the proposed method and need much more
time to generate the discrete LOD representations. Fur-
thermore, they do not allow for progressive streaming.

• Since we perform a reordering of the input triangle data,
which can only be cache-optimized per LOD section, our
method stands in conflict with cache performance opti-
mization schemes. However, our experiments suggest that
the loss in cache hit rate is insignificant compared to the
speedup of our LOD method, and that optimizations as-
suming a FIFO cache also become less relevant.

• The proposed method is unable to handle non-rigid mesh
animations (e.g., such used for skinned character models).

Overall, we think that our method might be very useful for
fast, progressive streaming in Web-based and mobile setups.

In the future, we plan to investigate compression schemes
which could be applied on top of our approach. In this con-
text, the relation between decompression speed and available
transmission bandwidth seems the most important aspect.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



M. Limper, Y. Jung, J. Behr, and M. Alexa / The POP Buffer:Rapid Progressive Clustering by Geometry Quantization

Acknowledgements: We like to thank Andrew Willmott for
providing the building model. The tractor model has been
kindly provided by Crytek. The fandisk model was taken
from the AIM@SHAPE repository. The horse model is cour-
tesy of the Georgia Institute of Technology. Other models are
courtesy of the Stanford 3D scanning repository. We finally
thank Christian Stein for assisting us to create the demo ap-
plications.

References
[AD01] ALLIEZ P., DESBRUN M.: Progressive compression for

lossless transmission of triangle meshes. In Proc. SIGGRAPH
(2001), pp. 195–202. 2, 8

[ALAK11] AHN J.-K., LEE D.-Y., AHN M., KIM C.-S.: R-
d optimized progressive compression of 3d meshes using pri-
oritized gate selection and curvature prediction. Vis. Comput.
(2011), 769–779. 2

[BCG05] BEN-CHEN M., GOTSMAN C.: On the optimality of
spectral compression of mesh data. ACM Trans. Graph. 24, 1
(2005), 60–80. 2

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZÖLLNER M.:
X3DOM: a DOM-based HTML5/X3D integration model. In
Proc. Web3D (2009), pp. 127–135. 1

[BJFS12] BEHR J., JUNG Y., FRANKE T., STURM T.: Using
images and explicit binary container for efficient and incremental
delivery of declarative 3D scenes on the web. In Proc. Web3D
(2012), pp. 17–25. 2

[Cho97] CHOW M. M.: Optimized geometry compression for
real-time rendering. In Proc. VIS (1997), pp. 347–354. 2

[Chu12] CHUN W.: WebGL models: End-to-end. In OpenGL
Insights. CRC Press, 2012, pp. 431–454. 2

[DBPGS10] DI BENEDETTO M., PONCHIO F., GANOVELLI F.,
SCOPIGNO R.: SpiderGL: a javascript 3D graphics library for
next-generation WWW. In Proc. Web3D (2010), pp. 165–174. 1

[Dee95] DEERING M.: Geometry compression. In Proc. SIG-
GRAPH (1995), pp. 13–20. 2

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the gpu. In Proc. I3D (2007), pp. 161–166. 3

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifica-
tion using quadric error metrics. In Proc. SIGGRAPH (1997),
pp. 209–216. 3, 6, 7

[Hop96] HOPPE H.: Progressive meshes. In Proc. SIGGRAPH
(1996), pp. 99–108. 2

[Hop98] HOPPE H.: Efficient implementation of progressive
meshes. Computers & Graphics (1998), 27–36. 1

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proc. I3D
(2009), pp. 169–176. 2, 6

[HV01] HAO X., VARSHNEY A.: Variable-precision rendering.
In Proc. I3D (2001), pp. 149–158. 2, 5

[IL05] ISENBURG M., LINDSTROM P.: Streaming meshes. In
Proc. VIS (2005), pp. 231–238. 7

[JPP08] JOVANOVA B., PREDA M., PRETEUX F.: MPEG4 Part
25: A Generic Model for 3D Graphics Compression. In Proc.
3DTV-CON (2008), pp. 101–104. 2

[Kil08] KILGARD M. J.: Modern opengl usage: Using vertex
buffer objects well. In SIGGRAPH ASIA courses (Contributed
Chapter) (2008), pp. 13:1–13:31. 9

[LCD13] LAVOUÉ G., CHEVALIER L., DUPONT F.: Streaming
compressed 3D data on the web using JavaScript and WebGL. In
Proc. Web3D (2013), pp. 19–28. 1, 2

[LCL10] LEE J., CHOE S., LEE S.: Mesh geometry compression
for mobile graphics. In Proc. CCNC (2010), pp. 301–305. 2, 6,
8

[LE97] LUEBKE D., ERIKSON C.: View-dependent simplifica-
tion of arbitrary polygonal environments. In Proc. SIGGRAPH
(1997), pp. 199–208. 3

[Lin00] LINDSTROM P.: Out-of-core simplification of large
polygonal models. In Proc. SIGGRAPH (2000), pp. 259–262.
3

[LLD12] LEE H., LAVOUÉ G., DUPONT F.: Rate-distortion op-
timization for progressive compression of 3d mesh with color at-
tributes. Vis. Comput. (2012), 137–153. 2

[LT97] LOW K.-L., TAN T.-S.: Model simplification using
vertex-clustering. In Proc. I3D (1997), pp. 75–81. 3

[LWC∗02] LUEBKE D., WATSON B., COHEN J. D., REDDY M.,
VARSHNEY A.: Level of Detail for 3D Graphics. Elsevier Sci-
ence Inc., 2002. 3

[LWS∗13] LIMPER M., WAGNER S., STEIN C., JUNG Y.,
STORK A.: Fast delivery of 3D web content: A case study. In
Proc. Web3D (2013), pp. 11–18. 2, 8

[MCAH12] MAGLO A., COURBET C., ALLIEZ P., HUDELOT
C.: Progressive compression of manifold polygon meshes. Com-
put. Graph. (2012), 349–359. 8

[MSGS11] MEYER Q., SUSSNER G., GREINER G., STAM-
MINGER M.: Adaptive level-of-precision for gpu-rendering. In
Proc. VMV (2011), pp. 169–176. 2, 4, 6

[PBCK05] PURNOMO B., BILODEAU J., COHEN J. D., KUMAR
S.: Hardware-compatible vertex compression using quantization
and simplification. In Proc. HWWS (2005), pp. 53–61. 2

[PK05] PENG J., KUO C.-C. J.: Geometry-guided progressive
lossless 3d mesh coding with octree (ot) decomposition. ACM
Trans. Graph. 24, 3 (2005), 609–616. 2

[PKJK05] PENG J., KIM C.-S., JAY KUO C. C.: Technologies
for 3d mesh compression: A survey. J. Vis. Comun. Image Rep-
resent. (2005), 688–733. 1, 2

[PLS08] POOL J., LASTRA A., SINGH M.: Energy-precision
tradeoffs in mobile graphics processing units. In ICCD (2008),
IEEE, pp. 60–67. 2

[PR00] PAJAROLA R. B., ROSSIGNAC J.: Squeeze: Fast and pro-
gressive decompression of triangle meshes. In Proc. CGI (2000),
pp. 173–182. 1

[RB92] ROSSIGNAC J., BORREL P.: Multi-resolution 3D approx-
imations for rendering complex scenes. Tech. rep., 1992. IBM
Research Report RC 17697. 3, 7

[SM05] SANDER P. V., MITCHELL J. L.: Progressive buffers:
view-dependent geometry and texture lod rendering. In Proc.
SGP (2005), pp. 129–138. 3, 4, 6

[SNB07] SANDER P. V., NEHAB D., BARCZAK J.: Fast triangle
reordering for vertex locality and reduced overdraw. ACM Trans.
Graph. 26, 3 (2007), 89:1–89:9. 3, 8, 9

[SS97] SCHMALSTIEG D., SCHAUFLER G.: Smooth levels of
detail. In Proc. VRAIS (1997), pp. 12–19. 3, 6

[Sva99] SVAROVSKY J.: Extreme detail graphics. In Proc. Game
Developers Conference (1999), pp. 889–904. 2, 6

[Wil11] WILLMOTT A.: Rapid simplification of multi-attribute
meshes. In Proc. HPG (2011), pp. 151–158. 3, 6, 7

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd


